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B (/~2) 0 (K) 

0"53 270 
0-45 285 
0"50 279 
0.45 (2) 285 (5) 
0.45 (1) 284(6) 
0.52 (8) 260(20) 

0.56 260 
0.51 275 
0.56 256 
0.49 281 
0.55 (5) 262 (12) 

Table 2. Comparison of results for B values of Nb 

(u2) 1/2 (/~,) Method 

0-142 Inelastic neutron scattering data 
0.131 Inelastic neutron scattering data 
0.138 Inelastic neutron scattering data 
0-131 ( 1 ) X-ray powder diffraction 
0.134 (1) X-ray powder diffraction 
0.140 (40) X-ray powder diffraction 

(not corrected for TDS) 
0-146 Elastic constant data 
0.139 Elastic constant data 
0-146 Elastic constant data 
0"136 Theoretical (model calculations) 
0.145 (6) Elastic neutron powder diffraction 

Reference 

Grimvall & Grimvail (1968) 
Sharp (1969) 
Poweli, Martel & Woods (1977) 
Linkoaho & Rantavuori (1970) 
Linkoaho ( 1971 ) 
Korsunskii, Genkin & Vigdorchik (1977) 

Padyukha & Chernyi (1966) 
Jones, Moss & Rose (1969) 
Gololobov, Mager, Mezhevich & Pan (1983) 
Gupta (1985) 
Present work 
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Abstract 

Large starting sets of random phases are in general 
inconsistent with positivity and atomicity of the elec- 
tron density. A correct solution can be achieved from 
them because the tangent formula is a process which 
maximizes entropy under physical constraints involv- 
ing the positivity and atomicity of electron density. 
Starting sets which are themselves tendentially 
maximally entropical can be created by associating 
phase shifts A, generated according to the yon Mises 
distribution of each triplet phase, to some (from 50 
to 300) triplet invariants. Then the phases generated 
via these perturbed triplets are samples of the phase 
population expected to be maximally entropical on 

0108-7673/87/060797-06501.50 

the basis of the prior information. Experimental tests 
show that the method may be a useful alternative to 
other conventional multisolution methods. 

I. Introduction 

Multisolution direct-methods computer programs are 
today a powerful tool for solving structures contain- 
ing up to 70 or 80 atoms in the asymmetric unit. 
Various sets of phases, among which the correct so- 
lution is usually found, are produced by application 
of the tangent formula or similar techniques. The 
unknown phase values among the reflexions chosen 
to start the phase determination are usually represen- 
ted by a magic-integer sequence (White & Woolfson, 
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798 A MULTISOLUTION PROCEDURE 

1975; Main, 1978). Alternatively, randomly chosen 
phase values sometime constitute a useful starting 
point (Baggio, Woolfson, Declercq & Germain, 1978; 
Declercq, Germain & Woolfson, 1979). 

Both magic integers and random approaches are 
economical and efficient ways of generating starting 
sets of phases. Until some years ago the unknown 
phases in the starting set were given all combinations 
of the values +7r/4, +3rr/4;  so, for m unknown 
phases, 4" sets of phases can be produced by quad- 
rant permutation. If the m phases are represented by 
magic integers ~oi = mix, then the errors can be evenly 
distributed among the ~oi and the root-mean-square 
error is controlled by appropriate choice of the 
integers m~. All the possible combinations of the q~i's 
can then be explored simply by sampling the variable 
x. In a wide sense the magic-integers approach may 
be considered as a generator of m pseudo-random 
phase values (under the condition that the phase 
space is systematically explored): m (the dimension- 
ality of the phase space to be explored) is required 
to be large enough to warrant the use of a large 
number of phase relationships in the early stages of 
the phasing procedure, and sufficiently small to 
reduce computer cost and errors in the phase rep- 
resentation. From the above point of view the logical 
jump from the magic-integers representation to a 
completely random starting set is rather small. 

Convergence from a random starting set to a correct 
set of phases may be secured by the use of phase 
relationships. The competitiveness of the method 
relies on the fact that a correct starting set is not a 
necessary or a sufficient condition for a correct phase 
expansion: sometimes wrong starting phases are 
expanded into correct sets of phases, and, vice versa, 
correct starting phases are developed into wrong so- 
lutions (Declercq, Germain & Woolfson, 1979). 

The availability of a large starting set is certainly 
an important advantage of the random approaches; 
this potential is emphasized in R A N T A N  (Yao Jia- 
xing 1981), in which several hundreds of phases are 
often generated as a starting set. A further advantage, 
so far not quoted in the literature, may be expressed 
thus: in the absence of any information on the nature 
of the diffracting matter, a (large) random set of 
phases is maximally entropical. Indeed, phases are 
evenly distributed between 0 and 2zr; their Fourier 
transform hardly produces an electron distribution 
concentrated into few peaks. Conversely, starting sets 
which are probably useless (too small content of 
entropy) are not produced in practice by a random 
process. Thus, a saving in computer time is obtained. 

However, large sets of random phases are in general 
inconsistent with positivity and atomicity of the elec- 
tron density. The application to random phases of 
the tangent formula or similar methods can be con- 
sidered as a procedure for maximizing entropy under 
physical constraints on the positivity and atomicity 

of the electron density [see Bricogne (1984) and 
literature therein quoted]. Such a process is not 
always easy: indeed, constraints are represented in 
reciprocal space by probabilistic phase relationships 
whose strength is not always sufficient to lead random 
phases to correct values, especially for large struc- 
tures. 

It seems therefore of some interest to have a pro- 
cedure which generates starting sets of phases which 
are themselves tendentially compatible with positivity 
and atomicity of the electron density, and are tenden- 
tially maximally entropical under these constraints. 
It may be hoped that such sets, assumed as starting 
sets, can be expanded and refined into correct phases 
more easily than sets of random phases uncorrelated 
with physical constraints. 

The description of the above procedure is the first 
aim of this paper. The procedure has been imple- 
mented in the SIR program (Cascarano et al., 1985) 
as an option which may be chosen by the user, for 
example, when other options fail. Some experimental 
tests are also described. 

2. Maximally entropical starting sets 

Let us suppose that the origin has been fixed by 
assigning a suitable set of phases and that other 
phases have been reliably estimated by means of 
probabilistic methods. Then an unknown phase ~0h is 
distributed (Karle & Hauptman, 1956; Karle & Karle, 
1966) according to 

P(ff'h[{ ~Okj, ~ O h - k )  , Gj }) = M (¢ph ; Oh, ah), 

where Gj = 2 EhEkjEh_kj/N 1/2, M is the von Mises 
distribution, 

M(q~h; Oh, ah)=[2zrlo(ah)] -' exp [ah COS (q~h-- Oh)], 

(1) 

Oh, the most probable value for ~%, is given by 

Y~ G~ sin (~pkj+ Ch-kj) Th 
J 

tan Oh = ~ Gj cos (q~k, + Ch-kj)-  Bh' 
J 

(2) 

and 

,~h= ( T~, + B~,) '/~. (3) 
From (1), 

2~r 

I cos q~hM(q~h; 0h, ah) d~%= Dl(ah) COS 0h, (4) 
o 

21r 

]" sin ~PhM(~h; Oh, 0gh) d~Ph= Dl(ah) sin Oh, (5) 
o 

from which the so-called circular variance, Vh= 
[ 1 -  D~(ah)], may be derived. 
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Since the entropy of a distribution q(q~) is defined 
to be 

2~" 

- I q ( q ~ )  l o g  q ( ~ o )  d~p, 
o 

the entropy associated with the von Mises distribution 
M(~o.; 0~, a .)  is 

-aDl(C~) + log [27rlo(a)]. 

It may be shown that, among all distributions, the 
von Mises distribution has maximum entropy (see 
the Appendix) under the condition that the mean 
direction 0h and the circular variance V, are fixed (it 
should be remembered that this characterization on 
the line produces the normal distribution). Positivity 
and atomicity of the diffracting matter, together with 
known phases (~0k,+~0h_k~), constitute all the prior 
information available at a certain moment. It is just 
this information which fixes the distribution with 
parameters 0h and a , .  Thus the application of the 
tangent formula may be considered as a simple mathe- 
matical tool for assigning phases according to the 
maximum-entropy principle (see also Bricogne, 
1984). 

Even if prior information fixes the distribution of 
~o,, its phase value is actually unknown. Indeed, ~oh 
may be considered as an element of a population of 
phases distributed according to the von Mises distri- 
bution with parameters Oh and an: the actual value 
of each element is unpredictable because it is fixed 
by the unknown crystal structure. This observation 
suggests how, from a small starting set of phases, a 
multisolution procedure may be generated, each so- 
lution starting from a kernel of phases which is 
already tendentially maximally entropical. The 
logical basis of the "process may be described in the 
following way. 

Let 0u = (q~k+ q~,_k) be a known quantity: then q~n 
is distributed according to M(~o.; 0., G). If a phase 
shift A (from now on referred to as avon Mises shift) 
is randomly generated according to the von Mises 
distribution M(za; 0, G) then the variable (0h+A) 
has the same distribution as q~h and may be used as 
a starting estimate of ~o~. In particular, each trial of 
a multisolution process may be started by randomly 
generating np von Mises phase shifts {A1, za2,..., A,,}, 
each shift associated with a properly chosen triplet 
invariant. Subsequent extension of phases by tangent 
formula or similar methods will lead to various sets 
of phases, each of them having exploited a particular 
set {A~}. 

The difference between the present method and the 
magic-integer or random-phase approaches is now 
clear. Magic-integer or random procedures define 
starting sets of n phases which are evenly or randomly 
distributed in the n-dimensional phase space. By con- 
trast, in the present method phases are generated via 
perturbed triplets so as to produce phase values which 

are samples of the population expected on the basis 
of the prior information. 

As a simple bidimensional example let us suppose 
that in a multisolution process the origin has been 
defined by ~o.,, ~o.2, ~o.3, and that ~o,. and ~0,~ are 
distributed according to M(q~..; 04, G4) and 
M(~o.~; 0s, Gs) respectively, where 

0 4 ~--" (~0nl "q- ~0n2 ) = 30 °, G 4 = 3, 

0s=(~o,,,+tp.3)=65 °, (}4=2. 

If von Mises phase shifts al and A2 are randomly 
generated according to M(A; ; 0 °, 3) and M(za2; 0 °, 2) 
respectively, then the variables (04 + a;) and (0s + Zaz) 
(which are the starting values associated with ~o.. and 
~o.~ in the various trials of the multisolution processes) 
will be distributed according to the prior information. 
In Fig. 1 the first 1000 generated pairs of values 
(04-)t-A1, 05-{-A2) are shown in the bidimensional 
space (~o,,,, q~,,5). As may be seen, the space is not 
evenly frequented: even if all phase values are acces- 
sible for (04+A1) and (05+A~), regions for which 

04-k- Al  = 30  ° a n d  0 5 +  A 2 - -  65  ° 

are more densely frequented. 
A further relevant aspect of the method is that large 

starting sets are no longer necessary. Indeed, the role 
of the variable starting phases is here replaced by the 
von Mises perturbation of triplets. 

Too small a number np of perturbed triplets can 
give rise to solutions of which only a few are different 
from one another; a very large number of perturbed 
triplets does not add significant advantages to the 
method. In our experience np values between 100 and 
250 are sensible choices. 
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Fig. 1. Distribution in the bidimensional space (~0,,, ~o,5 ) of the 
first 1000 generated pairs of values (04 + A~, 05 + a2). 
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3. The practical procedure 

The practical procedure may be described according 
to the following scheme: 

(1) The origin is defined by a convergence pro- 
cedure (Germain, Main & Woolfson, 1970). Some 
(up to eight) weak links are picked up for (possible) 
subsequent use in the phasing process [see step (3)]. 

(2) In order to define the enantiomorph tentatively, 
for each trial ne von Mises phase shifts Aj may be 
associated (in modulus and sign) with tl e triplets lying 
at the bottom of the convergence map. The enan- 
!iomorph is considered to be fixed if AjI>_ 30°; ne = 2 
Is a sensitive choice (in any tentative definition of the 
enantimorph, large n~ values cannot be used because 
the signs of Aj are usually inconsistent with the same 
enantiomorph; on the other hand n ~ = l  may 
occasionally be associated with an enantiomorph- 
insensitive triplet). 

(3) The modified tangent formula 

tan0h = •  Gjsin(~ok'+~Oh-k'+Aj)=Th (6) 
F. Gj cos (~k, + ~h-kj + Aj) Bh 

with concentration parameter 
+ '/2 

is applied. In the first stages of the phasing process, 
equation (6) works only on the hundred reflexions at 
the bottom of the convergence map. As in MULTAN, 
phase indications are accepted if ah is larger than a 
given cutoff CUT, which is lowered cycle by cycle by 
the factor 0.65. 

Equation (6) involves on the right-hand side known 
phase pairs (~k:~h-k,) ,  both with and without 
phase shifts Aj (phases correspond to origin-fixing 
reflexions, or weak links or phases previously fixed 
by the tangent formula). 

(4) If 0h, as given by equation (6), is accepted as 
a reliable estimate of ~h, then the triplet values 

r j <  

are calculated. If IT j[_< 20 ° no action is undertaken. 
If IT~I > 20 ° then a random von Mises phase shift Aj 
is generated and associated with it with the same sign 
as Tj. If IAjI> 21rjl then I jl is set to 21~1. 

The simple and fast algorithm by Best & Fisher 
(1979) is used to simulate samples from a yon Mises 
distribution for any value of the concentration par- 
ameter. 

(5) If fewer than five phases are accessible (via 
triplet and two-phase relationships) for the current 
CUT value, then a weak-link phase (selected by the 
convergence procedure) is generated with fiat distri- 
bution and introduced to make phase extension 
easier. At least two weak-link phases for non- 
centrosymmetric and three for centrosymmetric struc- 
tures are generated to emphasize the randomicity of 
the procedure. 

(6) Steps (3), (4), (5) are repeated until np values 
of Aj are assigned. 

(7) When tangent cycles over the 100 reflexions at 
the bottom of the convergence map are terminated, 
the np phase shifts Aj are reset to zero, and the 
determined phases are used as a starting set to expand 
and refine all the reflexions together until self- 
consistency is achieved. 

(8) In centrosymmetric space groups, triplet 
perturbation can only change the phase values by 
7r. Among the np triplets, a subset of negative ones 
will be created in each trial according to the 
following scheme: for each triplet a random number 
p [in the interval (0, 1)] is generated. If p >  
[0"5+0"5tanh(lEhEkEh+k]N~/2)] then the triplet 
phase is changed by 7r. The multisolution nature of 
the procedure is secured by the fact that the triplets 
which are positive in one trial may be negative in 
another one and vice versa. Furthermore, the percen- 
tage of negative triplets is automatically correlated 
with the structural complexity, according to common 
sense. On the average, for large structures a relatively 
larger percentage of negative triplets will be produced 
than for small structures because of the smaller 
frequencies of large G values. 

4. Experimental results and conclusions 

The procedure described in § 3 has been applied to 
the 24 crystal structures quoted in Table 1. The relia- 
bility of the various triplets was first estimated accord- 
ing to the second representation formula /1o (Cas- 
carano, Giacovazzo, Camalli, Spagna, Burla, Nunzi 
& Polidori, 1984). Triplets estimated as positive were 
actively used in the phasing process while triplets 
estimated as negative were used as a figure of merit 
(Cascarano, Giacovazzo & Viterbo, 1987). For each 
structure only 100 routinary trials were made: in 
column 7 the number of respective solutions is shown. 
It may be noted that: 

(a) for some structures the ratio (number of correct 
solutions/number of trials) is high. Some of them 
(APAPA, RIFOLO) can be considered 'difficult'. 

(b) No solution was routinely found in six cases 
(GRA4, SCHWZ2, TPH, MUNICH1,  TUR10, 
TPALA). However, it need not be concluded that the 
present method is unable to solve those structures. 
Indeed, for three of them (TPH, TUR10, TPALA), 
solutions were easily found by introducing one-and 
two-phase structure seminvariants in the phasing pro- 
cess. Furthermore, it cannot be ruled out that so- 
lutions for the last three cases (GRA4, SCHWZ2, 
MUNICH1)  may be found among 200-300 trials or 
after some variations of the parameters used in the 
routine procedure. 

Even if the above results can be considered quite 
satisfactory, the present procedure has to be con- 
sidered as a first achievement. In our opinion the 
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Table 1. Abbreviations, references, space groups and chemical data for 24 test st~ctures 

In the last column the number of correct solutions among the first 100 trials is given for each structure. 

Number  o f  
non-H atoms N u m b e r  o f  

Code  Reference* Space group Formula Z in the cell solutions 

INOS G P 2 t / n  C6HI206.H20 8 104 27 
ERGO G P212t21 C2sH440 8 232 1 
RIFOLO I" P21 C39H49NOI3 2 106 35 
GRA4 Y P1 C3oH22N204 2 72 - -  
QUINO G R3 C602 54 432 14 
DIOLE G I7~2d CIoH180 2 16 192 5 
APAPA G P41212 C3oH35NIsOt6P2 8 504 23 
PROLINA ¢ P21 C26H4oN407 2 74 3 
CEPHAL G C2 C18H21NO3 8 176 2 
NEWQB G P1 C24H2oN20 5 4 124 2 
NO55 G Fdd2 C2oH24N 4 16 384 8 
SCHWZ2 G P1 C46H7oO27 1 73 - -  
LOGANIN G P21212 ! ClTH26Oto 4 68 15 
SELENID G P2 t C22HEsO2Se 2 50 46 
TPH G C2221 C24N2H2o 12 312 1 § 
BED G 14 C26H26N404 8 272 8 
MGHEX G P31 C4sH6sNt2012Mg - 3 285 3 

(CIO4)2(CH3CN)4 
LITHO Y P2t2t21 C24H4oO3 4 108 13 
G O L D M A N  G Cc C28 H 16 8 224 14 
M U N I C H I  G C2 C20H16 8 160 - -  
AZET G Pca21 C21HI6C1NO 8 192 6 
DIAM G P42/n C14H2oO 8 120 13 
TUR10 G P6322 C15H240 2 12 204 33§ 
TPALA G P21 C2sH42OTN4 2 78 1 § 

* Complete references for test structures are not given for the sake of brevity. For 
the crystallographic groups in York (Y) and G&tingen (G). 

t Cerrini, Lamba, Nunzi, Burla & Polidori (1987). 
~t Colapietro, De Santis, Nocilli, Palleschi & Spagna (1985). 
§ No routine solution found. See text for further discussion. 
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most of them the reader is referred to magnetic tapes distributed by 

method has a large reserve of  power still not exploited.  
Further efforts will be devoted in the near future to 
optimize the process. 

Thanks are due to referees for useful suggestions.  

A P P E N D I X  

The entropy o f  a distribution q(~0) is defined to be 
2at 

- I q(~o)log q(~o)d~o. (All 
o 

According to Mardia (1972) the von Mises distribu- 
tion has m a x i m u m  entropy under the condit ion 
that the mean direction and the circular variance are 
fixed. The mean direction 0 and the circular variance 
V are defined according to 

2,n- 

(cos q~)q(q~) d~o=p cos O, (A2) 
o 

2"n- 
(sin q~)q(~0) d~0 = p sin 0, (A3) 

o 

V=[1-p] .  (A4) 

The theorem may be proved in the fol lowing way. 
Let m ( ~ )  be a further distribution. It is known from 

information theory (Rao,  1965) that 

2at 
- ~  q(~o) log[q(~o)/m(q~)]d~o<-O; (A5) 

o 

equality holds if  q(~o) and m(q~) are almost  
everywhere equal. 

If m(~o).is chosen to be a von Mises-type distribu- 
tion satisfying ( A 2 ) - ( A 4 )  then 

log m(~o) = a cos (~o - 19) - l o g  [2orlo(a)] ,  
(A6)  

where a is the solution of  the equation D~(a)= p. 
On using (A6) in (A5) we obtain 

2~r 

- ~ q(~o) log [q(q~)] d~o 
o 

2at 

<_ - ~ {,~ cos ( ~ -  0 ) - l o g  [2~/o(,~)]}q(~) d~ 
o 

which, because of  (A2) and (A3),  reduces to 
2¢r 

- ~ q(q~) log q(~o) dq~ -< D, 
o 

where D = - a p  + l o g  [27rio(a)].  
D is therefore the upper bound to the entropy 

under the condit ions fixed by ( A 2 ) - ( A 4 ) .  It is easily 
seen that, if  q is chosen to be equal to m, (A1)  reduces 
to D. Hence,  we obtain the required result. 
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The above theorem may also be stated according 
to Bricogne's (1984) formalism: when the mean  direc- 
tion 0 and the circular variance V = (1 - p) of  a distri- 
but ion q(q~) are given and m(~o) -- 1/(27r) is a uniform 
prior distr ibution,  then the entropy of q with respect 
to re{say S,,,(q)=-~q(cp)log[q(~p)/m(q~)]d~p} is 
maximal  when q(q~) equals the von Mises distr ibution 
M(q~; 0, a )  with DI(C~ ) =/9. 

In general,  if  

27r 
c j=(Cj(~p))=  ~ q(~o)Cj(~p) dq~ (ME0) 

0 

are the M constraint equations,  then the final 
expression for qME(q~) is given by the max imum-  
entropy equat ions 

qME(cp)=[m(cp)/Z(Ax,.. . ,AM)]exp [ ~ AjCj(~o)], 
j= l  

(ME1) 

where 

Io ] Z ( A , , . . . ,  AM)= m(q~) exp AjCj(~o) dq~, 
j=l  

(ME2) 

8/ 6Aj(log Z) = cj ( j =  1 , 2 , . . . . ,  M).  
(ME3) 

Aj are Lagrange multipliers.  
In our case 

2rr 
c,= I q(~p)cos(q~-O)dq~=p 

0 

with C~ (~)  = cos (~ - 0), and 

2~" 
C2 = ~ q(q~) sin (~o-0)  dq~=0 

0 

with C2(q~) = sin (~o - 0). Consequent ly  

2~" 
Z(AI,A2) = ~ m(~)exp[A,Cl(q~)+A2C2(cp)]dq~ 

0 

2"it 
= ( 1 / 2 r r )  ~ e x p { a  cos [q~- (0+~: ) ]}d tp  

0 
= lo(a) 

where a = ( a ~ +  a~) '/z 
From (ME3),  

6 ( l o g Z ) / 6 A , = ( A , / a ) D , ( a ) = p ,  (A7) 

8 ( logZ)/6h2=(h2/a)Dl(a)=O.  (A8) 

Therefore A2 = 0 and a = h i ,  so that, according to 
(A7), D~(a)= p. Then, according to (ME1),  

qME(¢)=[27rlo(a)]-I exp {[pa/Dl(a)]cos (~-O)} ,  

which coincides with M ( ~ ;  0, a) .  
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